f08 — Least-squares and Eigenvalue Problems (LAPACK) f08qvc

NAG C Library Function Document

nag_ztrsyl (f08qvc)

1 Purpose

nag_ztrsyl (f08qvc) solves the complex triangular Sylvester matrix equation.

2 Specification

void nag_ztrsyl (Nag_OrderType order, Nag_TransType trana, Nag_TransType tranb,
Nag_SignType sign, Integer m, Integer n, const Complex a[], Integer pda,
const Complex b[], Integer pdb, Complex c[], Integer pdc, double *scal,
NagError xfail)

3 Description
nag_ztrsyl (f08qvc) solves the complex Sylvester matrix equation
op(A)X £+ Xop(B) = aC,

where op(4) = A or A" and the matrices A and B are upper triangular; o is a scale factor (< 1)
determined by the function to avoid overflow in X; A is m by m and B is n by n while the right-hand
side matrix C' and the solution matrix X are both m by n. The matrix X is obtained by a straightforward
process of back substitution (see Golub and Van Loan (1996)).

Note that the equation has a unique solution if and only if o; £ 3; # 0, where {«;} and {3;} are the
eigenvalues of A and B respectively and the sign (4 or —) is the same as that used in the equation to be
solved.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press,
Baltimore

Higham N J (1992) Perturbation theory and backward error for AX — XB = C Numerical Analysis Report
University of Manchester

5 Parameters

1: order — Nag OrderType Input

On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order = Nag_RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this parameter.

Constraint: order = Nag_RowMajor or Nag_ColMajor.

2: trana — Nag TransType Input
On entry: specifies the option op(A) as follows:
if trana = Nag NoTrans, then op(A) = A;
if trana = Nag_ConjTrans, then op(A4) = A”.

Constraint: trana = Nag_NoTrans or Nag_ConjTrans.

[NP3645/7] 108qve. 1

f08qve NAG C Library Manual

3: tranb — Nag TransType Input
On entry: specifies the option op(B) as follows:
if tranb = Nag NoTrans, then op(B) = B;
if tranb = Nag_ConjTrans, then op(B) = B”.

Constraint: tranb = Nag_NoTrans or Nag_ConjTrans.

4: sign — Nag_SignType Input
On entry: indicates the form of the Sylvester equation as follows:
if sign = Nag_Plus, then the equation is of the form op(A)X + X op(B) = aC;
if sign = Nag_Minus, then the equation is of the form op(A)X — X op(B) = aC.

Constraint: sign = Nag_Plus or Nag_Minus.

5: m — Integer Input
On entry: m, the order of the matrix A, and the number of rows in the matrices X and C.

Constraint: m > 0.

6: n — Integer Input
On entry: n, the order of the matrix B, and the number of columns in the matrices X and C.

Constraint: n > 0.

7: a[dim| — const Complex Input
Note: the dimension, dim, of the array a must be at least max(1, pda x m).

If order = Nag_ColMajor, the (4, j)th element of the matrix A is stored in a[(j — 1) x pda + 4 — 1] and
if order = Nag_RowMajor, the (i,j)th element of the matrix A is stored in a[(i — 1) x pda + j — 1].

On entry: the m by m upper triangular matrix A.

8: pda — Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array a.

Constraint: pda > max(1, m).

9: b[dim] — const Complex Input
Note: the dimension, dim, of the array b must be at least max(1, pdb x n).

If order = Nag_ColMajor, the (i, j)th element of the matrix B is stored in b[(j — 1) x pdb + 4 — 1] and
if order = Nag_RowMajor, the (i, j)th element of the matrix B is stored in b[(¢ — 1) x pdb + j — 1].

On entry: the n by n upper triangular matrix B.

10: pdb — Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array b.

Constraint: pdb > max(1,n).

11: c[dim] — Complex Input/Output

Note: the dimension, dim, of the array ¢ must be at least max(l,pdc x n) when
order = Nag_ColMajor and at least max(1, pdc x m) when order = Nag_RowMajor.

If order = Nag_ColMajor, the (i, j)th element of the matrix C is stored in ¢[(j — 1) x pde + ¢ — 1] and
if order = Nag_RowMajor, the (i, j)th element of the matrix C' is stored in ¢[(i — 1) x pdc + j — 1].

f08qve.2 [NP3645/7]

f08 — Least-squares and Eigenvalue Problems (LAPACK) f08qve

12:

14:

6

On entry: the m by n right-hand side matrix C.

On exit: ¢ is overwritten by the solution matrix X.

pdc — Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array c.

Constraints:
if order = Nag_ColMajor, pdc > max(1, m);
if order = Nag_RowMajor, pdc > max(1,n).
scal — double * Output

On exit: the value of the scale factor «.

fail — NagError * Output

The NAG error parameter (see the Essential Introduction).

Error Indicators and Warnings

NE_INT

On entry, m = (value).
Constraint: m > 0.

On entry, n = (value).
Constraint: n > 0.

On entry, pda = (value).
Constraint: pda > 0.

On entry, pdb = (value).
Constraint: pdb > 0.

On entry, pde = (value).
Constraint: pdc > 0.

NE_INT 2

On entry, pda = (value), m = (value).
Constraint: pda > max(1, m).

On entry, pdb = (value), n = (value).
Constraint: pdb > max(1,n).

On entry, pde = (value), m = (value).
Constraint: pde > max(1, m).

On entry, pde = (value), n = (value).
Constraint: pde > max(1,n).

NE_PERTURBED

A and B have common or close eigenvalues, perturbed values of which were used to solve the
equation.

NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD_PARAM

On entry, parameter (value) had an illegal value.

[NP3645/7] 108qve.3

f08qve NAG C Library Manual

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

7 Accuracy

Consider the equation AX — XB = C. (To apply the remarks to the equation AX + XB = C, simply
replace B by —B.)

Let X be the computed solution and R the residual matrix:
R=C - (AX — XB).
Then the residual is always small:
IRllp = O(e) (1Al p + 1Bl)1 X1 -

However, X is not necessarily the exact solution of a slightly perturbed equation; in other words, the
solution is not backwards stable.

For the forward error, the following bound holds:

1Bl

X — X[, < e
H HF _S€p<A,B)

but this may be a considerable over estimate. See Golub and Van Loan (1996) for a definition of
sep(A, B), and Higham (1992) for further details.

These remarks also apply to the solution of a general Sylvester equation, as described in Section 8.

8 Further Comments
The total number of real floating-point operations is approximately 4mn(m + n).
To solve the general complex Sylvester equation

AX+tXB=C

where A and B are general matrices, A and B must first be reduced to Schur form :
A=QAQ{ and B=Q,BQy

where A and B are upper triangular and), and (), are unitary. The original equation may then be
transformed to:

AX+XB=C
where X = QP XQ, and C=QYCQ,. C may be computed by matrix multiplication; nag_ztrsyl

(f08qvc) may be used to solve the transformed equation; and the solution to the original equation can be
obtained as X = Q,XQY.

The real analogue of this function is nag_dtrsyl (f08qhc).

9 Example
To solve the Sylvester equation AX + XB = C, where

—6.00 — 7.00¢ 0.36 —0.36: —0.19+0.48¢ 0.88 —0.257
0.00 +0.00¢ —5.00+2.00c —0.03 —0.72¢ —0.23 4+ 0.13%
0.00 + 0.00¢ 0.00 + 0.00¢ 8.00 — 1.00¢ 0.94 +0.53% |’
0.00 + 0.00¢ 0.00 + 0.00¢ 0.00 + 0.004 3.00 —4.00¢

A=

108qve.4 [NP3645/7]

f08 — Least-squares and Eigenvalue Problems (LAPACK) f08qvc

0.50 - 0.20¢ —0.29-0.16¢ —0.3740.84: —0.5540.73%
0.00 4+ 0.00¢ —0.40 + 0.90¢ 0.06 +0.22¢ —0.43+0.17¢

B= 0.00 + 0.007 0.00 +0.002 —0.90 —0.107 —0.89 — 0.427
0.00 4 0.00:¢ 0.00 4 0.00: 0.00 + 0.00: 0.30 — 0.70:
and
0.63 +0.357 0.45 — 0.563 0.08 —0.147 —-0.17 —0.237
C— —0.174+0.09¢ —0.07 —0.31% 0.27 — 0.54:¢ 0.354+1.21¢

—0.93 -0.44; —-0.33 —-0.35¢ 0.41 —0.037 0.57 + 0.84¢
0.54 +0.25¢ —0.62 —0.05¢ —0.52 —0.13% 0.11 — 0.08¢

9.1 Program Text

/* nag_ztrsyl (£08gvc) Example Program.
* Copyright 2001 Numerical Algorithms Group.

* Mark 7, 2001.
*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf08.h>
#include <nagx04.h>

int main(void)
{
/* Scalars *x/
Integer i, j, m, n, pda, pdb, pdc;
Integer exit_status=0;
double scale;
NagError fail;
Nag_OrderType order;
/* Arrays */
Complex *a=0, *b=0, *c=0;

#ifdef NAG COLUMN_MAJOR
#define A(I,J) al(J-1)*pda + I - 1]
#define B(I,J) [(J 1) *pdb
#define C(I,J) c[(J-1)*pdc + I -

+
H

|
e

order Nag_ColMajor;
#else
#define A(I,J) al(I l)*pda + J - 1]
#define B(I,J) b[(I-1)*pdb + J - 1]
#define C(I,J) c[(I-1)*pdc + J - 1]
order = Nag_RowMajor;

#endif

INIT_FAIL(fail);
Vprintf ("f08gvc Example Program Results\n\n");

/* Skip heading in data file =*/
Vscanf ("s*x["\n] ");

Vscanf ("%$1d%1d%*["\n] ", &m, &n);
#ifdef NAG_COLUMN_MAJOR

pda = m;

pdb = n;

pdc = m;
#else

pda = m;

pdb = n;

pdc = n;
#endif

/* Allocate memory */

[NP3645/7] 108qve.5

f08qvc
if (!(a = NAG_ALLOC(m * m, Complex)) ||
! (b = NAG_ALLOC(n * m, Complex)) ||
!(c = NAG_ALLOC(m * n, Complex)))
{
Vprintf ("Allocation failure\n");
exit_status = -1;
goto END;
}
/* Read A, B and C from data file */
for (i = 1; i <= m; ++1)
{
for (3 = 1; j <= m; ++3)
Vscanf (" (%1f , %1f) ", &A(i,j).re, &A(i,]J).im);
}
Vscanf ("s*x["\n] ");
for (i = 1; i <= n; ++1i)
{
for (3 = 1; j <= n; ++3)
Vscanf (" (%1f , %1f) ", &B(i,j).re, &B(i,]J).im);
}
Vscanf ("$*[*\n] ");
for (i = 1; i <= m; ++1i)
{
for (j = 1; j <= n; ++3)
Vscanf (" (%1f , %1f) ", &C(i,j).re, &C(i,7J).im);
}
Vscanf ("s*[*\n] ");

/* Reorder the Schur factorization T =*/
f08gvc(order, Nag NoTrans, Nag NoTrans, Nag_Plus, m, n,
b, pdb, ¢, pdc, &scale, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from f08gvc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
/* Print the solution matrix X stored in C */
x04dbc (order, Nag_GeneralMatrix, Nag_NonUnitDiag, m, n,

NAG C Library Manual

a, pda,

¢, pdc, Nag_BracketForm, "%7.4f", "Solution matrix X",

Nag_IntegerLabels, 0O, Nag_IntegerLabels, 0, 80,
if (fail.code != NE_NOERROR)
{
Vprintf ("Error from x04dbc.\n%s\n", fail.message);
exit_status = 1;
goto END;
3
Vprintf ("\n SCALE = %10.2e\n", scale);
END:
if (a) NAG_FREE(a);
if (b) NAG_FREE(b);
if (c¢) NAG_FREE(c);

return exit_status;

9.2 Program Data

f08gvc Example Program Data

4 4
(-6.00,-7.00) (0.36,-0.36) (-0.19, 0.48) (0.88,-0.25)
(0.00, 0.00) (-5.00, 2.00) (-0.03,-0.72) (-0.23, 0.13)
(0.00, 0.00) (0.00, 0.00) (8.00,-1.00) (0.94, 0.53)
(0.00, 0.00) (0.00, 0.00) (0.00, 0.00) (3.00,-4.00)
(0.50,-0.20) (-0.29,-0.16) (-0.37, 0.84) (-0.55, 0.73)
(0.00, 0.00) (-0.40, 0.90) (0.06, 0.22) (-0.43, 0.17)
(0.00, 0.00) (0.00, 0.00) (-0.90,-0.10) (-0.89,-0.42)
(0.00, 0.00) (0.00, 0.00) (0.00, 0.00) (0.30,-0.70)
(0.63, 0.35) (0.45,-0.56) (0.08,-0.14) (-0.17,-0.23)

f08qvc.6

0, &fail);

:Values of M and N

:End of matrix A

:End of matrix B

[NP3645/7]

f08 — Least-squares and Eigenvalue Problems (LAPACK) f08qvc

(-0.17, 0.09) (-0.07,-0.31) (0.27,-0.54) (0.35, 1.21)
(-0.93,-0.44) (-0.33,-0.35) (0.41,-0.03) (0.57, 0.84)
(0.54, 0.25) (-0.62,-0.05) (-0.52,-0.13) (0.11,-0.08) :End of matrix C

9.3 Program Results

f08gvc Example Program Results

Solution matrix X

1 2 3 4
1 (-0.0611, 0.0249) (-0.0031, 0.0798) (-0.0062, 0.0165) (0.0054,-0.0063)
2 (0.0215,-0.0003) (-0.0155, 0.0570) (-0.0665, 0.0718) (0.0290,-0.2636)
3 (-0.0949,-0.0785) (-0.0415,-0.0298) (0.0357, 0.0244) (0.0284, 0.1108)
4 (0.0281, 0.1052) (-0.0970,-0.1214) (-0.0271,-0.0940) (0.0402, 0.0048)
SCALE = 1.00e+00

[NP3645/7] f08qve.7 (last)

	f08qvc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	order
	trana
	tranb
	sign
	m
	n
	a
	pda
	b
	pdb
	c
	pdc
	scal
	fail

	6 Error Indicators and Warnings
	NE_INT
	NE_INT_2
	NE_PERTURBED
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

