
NAG C Library Function Document

nag_ztrsyl (f08qvc)

1 Purpose

nag_ztrsyl (f08qvc) solves the complex triangular Sylvester matrix equation.

2 Specification

void nag_ztrsyl (Nag_OrderType order, Nag_TransType trana, Nag_TransType tranb,
Nag_SignType sign, Integer m, Integer n, const Complex a[], Integer pda,
const Complex b[], Integer pdb, Complex c[], Integer pdc, double *scal,
NagError *fail)

3 Description

nag_ztrsyl (f08qvc) solves the complex Sylvester matrix equation

opðAÞX �XopðBÞ ¼ �C;

where opðAÞ ¼ A or AH, and the matrices A and B are upper triangular; � is a scale factor (� 1)
determined by the function to avoid overflow in X; A is m by m and B is n by n while the right-hand
side matrix C and the solution matrix X are both m by n. The matrix X is obtained by a straightforward
process of back substitution (see Golub and Van Loan (1996)).

Note that the equation has a unique solution if and only if �i � �j 6¼ 0, where f�ig and f�jg are the

eigenvalues of A and B respectively and the sign (þ or �) is the same as that used in the equation to be
solved.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press,
Baltimore

Higham N J (1992) Perturbation theory and backward error for AX �XB ¼ C Numerical Analysis Report

University of Manchester

5 Parameters

1: order – Nag_OrderType Input

On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order ¼ Nag RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this parameter.

Constraint: order ¼ Nag RowMajor or Nag ColMajor.

2: trana – Nag_TransType Input

On entry: specifies the option opðAÞ as follows:

if trana ¼ Nag NoTrans, then opðAÞ ¼ A;

if trana ¼ Nag ConjTrans, then opðAÞ ¼ AH .

Constraint: trana ¼ Nag NoTrans or Nag ConjTrans.

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08qvc

[NP3645/7] f08qvc.1



3: tranb – Nag_TransType Input

On entry: specifies the option opðBÞ as follows:

if tranb ¼ Nag NoTrans, then opðBÞ ¼ B;

if tranb ¼ Nag ConjTrans, then opðBÞ ¼ BH .

Constraint: tranb ¼ Nag NoTrans or Nag ConjTrans.

4: sign – Nag_SignType Input

On entry: indicates the form of the Sylvester equation as follows:

if sign ¼ Nag Plus, then the equation is of the form opðAÞX þX opðBÞ ¼ �C;

if sign ¼ Nag Minus, then the equation is of the form opðAÞX �X opðBÞ ¼ �C.

Constraint: sign ¼ Nag Plus or Nag Minus.

5: m – Integer Input

On entry: m, the order of the matrix A, and the number of rows in the matrices X and C.

Constraint: m � 0.

6: n – Integer Input

On entry: n, the order of the matrix B, and the number of columns in the matrices X and C.

Constraint: n � 0.

7: a½dim� – const Complex Input

Note: the dimension, dim, of the array a must be at least maxð1;pda�mÞ.
If order ¼ Nag ColMajor, the ði; jÞth element of the matrix A is stored in a½ðj� 1Þ � pdaþ i� 1� and
if order ¼ Nag RowMajor, the ði; jÞth element of the matrix A is stored in a½ði� 1Þ � pdaþ j� 1�.
On entry: the m by m upper triangular matrix A.

8: pda – Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array a.

Constraint: pda � maxð1;mÞ.

9: b½dim� – const Complex Input

Note: the dimension, dim, of the array b must be at least maxð1; pdb� nÞ.
If order ¼ Nag ColMajor, the ði; jÞth element of the matrix B is stored in b½ðj� 1Þ � pdbþ i� 1� and
if order ¼ Nag RowMajor, the ði; jÞth element of the matrix B is stored in b½ði� 1Þ � pdbþ j� 1�.
On entry: the n by n upper triangular matrix B.

10: pdb – Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array b.

Constraint: pdb � maxð1; nÞ.

11: c½dim� – Complex Input/Output

Note: the dimension, dim, of the array c must be at least maxð1; pdc� nÞ when
order ¼ Nag ColMajor and at least maxð1; pdc�mÞ when order ¼ Nag RowMajor.

If order ¼ Nag ColMajor, the ði; jÞth element of the matrix C is stored in c½ðj� 1Þ � pdcþ i� 1� and
if order ¼ Nag RowMajor, the ði; jÞth element of the matrix C is stored in c½ði� 1Þ � pdcþ j� 1�.

f08qvc NAG C Library Manual

f08qvc.2 [NP3645/7]



On entry: the m by n right-hand side matrix C.

On exit: c is overwritten by the solution matrix X.

12: pdc – Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array c.

Constraints:

if order ¼ Nag ColMajor, pdc � maxð1;mÞ;
if order ¼ Nag RowMajor, pdc � maxð1; nÞ.

13: scal – double * Output

On exit: the value of the scale factor �.

14: fail – NagError * Output

The NAG error parameter (see the Essential Introduction).

6 Error Indicators and Warnings

NE_INT

On entry, m = hvaluei.
Constraint: m � 0.

On entry, n = hvaluei.
Constraint: n � 0.

On entry, pda ¼ hvaluei.
Constraint: pda > 0.

On entry, pdb ¼ hvaluei.
Constraint: pdb > 0.

On entry, pdc ¼ hvaluei.
Constraint: pdc > 0.

NE_INT_2

On entry, pda ¼ hvaluei, m ¼ hvaluei.
Constraint: pda � maxð1;mÞ.
On entry, pdb ¼ hvaluei, n ¼ hvaluei.
Constraint: pdb � maxð1; nÞ.
On entry, pdc ¼ hvaluei, m ¼ hvaluei.
Constraint: pdc � maxð1;mÞ.
On entry, pdc ¼ hvaluei, n ¼ hvaluei.
Constraint: pdc � maxð1; nÞ.

NE_PERTURBED

A and B have common or close eigenvalues, perturbed values of which were used to solve the
equation.

NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD_PARAM

On entry, parameter hvaluei had an illegal value.

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08qvc

[NP3645/7] f08qvc.3



NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

7 Accuracy

Consider the equation AX �XB ¼ C. (To apply the remarks to the equation AX þXB ¼ C, simply
replace B by �B:)

Let ~XX be the computed solution and R the residual matrix:

R ¼ C � ðA ~XX � ~XXBÞ:
Then the residual is always small:

kRkF ¼ Oð�Þ ðkAkF þ kBkF Þk ~XXkF :

However, ~XX is not necessarily the exact solution of a slightly perturbed equation; in other words, the
solution is not backwards stable.

For the forward error, the following bound holds:

k ~XX �XkF � kRkF
sepðA;BÞ

but this may be a considerable over estimate. See Golub and Van Loan (1996) for a definition of
sepðA;BÞ, and Higham (1992) for further details.

These remarks also apply to the solution of a general Sylvester equation, as described in Section 8.

8 Further Comments

The total number of real floating-point operations is approximately 4mnðmþ nÞ.
To solve the general complex Sylvester equation

AX �XB ¼ C

where A and B are general matrices, A and B must first be reduced to Schur form :

A ¼ Q1
~AAQH

1 and B ¼ Q2
~BBQH

2

where ~AA and ~BB are upper triangular and Q1 and Q2 are unitary. The original equation may then be
transformed to:

~AA ~XX � ~XX ~BB ¼ ~CC

where ~XX ¼ QH
1 XQ2 and ~CC ¼ QH

1 CQ2.
~CC may be computed by matrix multiplication; nag_ztrsyl

(f08qvc) may be used to solve the transformed equation; and the solution to the original equation can be

obtained as X ¼ Q1
~XXQH

2 .

The real analogue of this function is nag_dtrsyl (f08qhc).

9 Example

To solve the Sylvester equation AX þXB ¼ C, where

A ¼

�6:00� 7:00i 0:36� 0:36i �0:19þ 0:48i 0:88� 0:25i
0:00þ 0:00i �5:00þ 2:00i �0:03� 0:72i �0:23þ 0:13i
0:00þ 0:00i 0:00þ 0:00i 8:00� 1:00i 0:94þ 0:53i
0:00þ 0:00i 0:00þ 0:00i 0:00þ 0:00i 3:00� 4:00i

1
CCA

0
BB@ ;

f08qvc NAG C Library Manual

f08qvc.4 [NP3645/7]



B ¼

0:50� 0:20i �0:29� 0:16i �0:37þ 0:84i �0:55þ 0:73i
0:00þ 0:00i �0:40þ 0:90i 0:06þ 0:22i �0:43þ 0:17i
0:00þ 0:00i 0:00þ 0:00i �0:90� 0:10i �0:89� 0:42i
0:00þ 0:00i 0:00þ 0:00i 0:00þ 0:00i 0:30� 0:70i

1
CCA

0
BB@

and

C ¼

0:63þ 0:35i 0:45� 0:56i 0:08� 0:14i �0:17� 0:23i
�0:17þ 0:09i �0:07� 0:31i 0:27� 0:54i 0:35þ 1:21i
�0:93� 0:44i �0:33� 0:35i 0:41� 0:03i 0:57þ 0:84i
0:54þ 0:25i �0:62� 0:05i �0:52� 0:13i 0:11� 0:08i

1
CCA

0
BB@ :

9.1 Program Text

/* nag_ztrsyl (f08qvc) Example Program.
*
* Copyright 2001 Numerical Algorithms Group.
*
* Mark 7, 2001.
*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf08.h>
#include <nagx04.h>

int main(void)
{

/* Scalars */
Integer i, j, m, n, pda, pdb, pdc;
Integer exit_status=0;
double scale;
NagError fail;
Nag_OrderType order;
/* Arrays */
Complex *a=0, *b=0, *c=0;

#ifdef NAG_COLUMN_MAJOR
#define A(I,J) a[(J-1)*pda + I - 1]
#define B(I,J) b[(J-1)*pdb + I - 1]
#define C(I,J) c[(J-1)*pdc + I - 1]

order = Nag_ColMajor;
#else
#define A(I,J) a[(I-1)*pda + J - 1]
#define B(I,J) b[(I-1)*pdb + J - 1]
#define C(I,J) c[(I-1)*pdc + J - 1]

order = Nag_RowMajor;
#endif

INIT_FAIL(fail);
Vprintf("f08qvc Example Program Results\n\n");

/* Skip heading in data file */
Vscanf("%*[^\n] ");
Vscanf("%ld%ld%*[^\n] ", &m, &n);

#ifdef NAG_COLUMN_MAJOR
pda = m;
pdb = n;
pdc = m;

#else
pda = m;
pdb = n;
pdc = n;

#endif

/* Allocate memory */

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08qvc

[NP3645/7] f08qvc.5



if ( !(a = NAG_ALLOC(m * m, Complex)) ||
!(b = NAG_ALLOC(n * m, Complex)) ||
!(c = NAG_ALLOC(m * n, Complex)) )

{
Vprintf("Allocation failure\n");
exit_status = -1;
goto END;

}

/* Read A, B and C from data file */
for (i = 1; i <= m; ++i)

{
for (j = 1; j <= m; ++j)

Vscanf(" ( %lf , %lf ) ", &A(i,j).re, &A(i,j).im);
}

Vscanf("%*[^\n] ");
for (i = 1; i <= n; ++i)

{
for (j = 1; j <= n; ++j)

Vscanf(" ( %lf , %lf ) ", &B(i,j).re, &B(i,j).im);
}

Vscanf("%*[^\n] ");
for (i = 1; i <= m; ++i)

{
for (j = 1; j <= n; ++j)

Vscanf(" ( %lf , %lf ) ", &C(i,j).re, &C(i,j).im);
}

Vscanf("%*[^\n] ");

/* Reorder the Schur factorization T */
f08qvc(order, Nag_NoTrans, Nag_NoTrans, Nag_Plus, m, n, a, pda,

b, pdb, c, pdc, &scale, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from f08qvc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
/* Print the solution matrix X stored in C */
x04dbc(order, Nag_GeneralMatrix, Nag_NonUnitDiag, m, n,

c, pdc, Nag_BracketForm, "%7.4f", "Solution matrix X",
Nag_IntegerLabels, 0, Nag_IntegerLabels, 0, 80, 0, 0, &fail);

if (fail.code != NE_NOERROR)
{

Vprintf("Error from x04dbc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
Vprintf("\n SCALE = %10.2e\n", scale);

END:
if (a) NAG_FREE(a);
if (b) NAG_FREE(b);
if (c) NAG_FREE(c);

return exit_status;
}

9.2 Program Data

f08qvc Example Program Data
4 4 :Values of M and N

(-6.00,-7.00) ( 0.36,-0.36) (-0.19, 0.48) ( 0.88,-0.25)
( 0.00, 0.00) (-5.00, 2.00) (-0.03,-0.72) (-0.23, 0.13)
( 0.00, 0.00) ( 0.00, 0.00) ( 8.00,-1.00) ( 0.94, 0.53)
( 0.00, 0.00) ( 0.00, 0.00) ( 0.00, 0.00) ( 3.00,-4.00) :End of matrix A
( 0.50,-0.20) (-0.29,-0.16) (-0.37, 0.84) (-0.55, 0.73)
( 0.00, 0.00) (-0.40, 0.90) ( 0.06, 0.22) (-0.43, 0.17)
( 0.00, 0.00) ( 0.00, 0.00) (-0.90,-0.10) (-0.89,-0.42)
( 0.00, 0.00) ( 0.00, 0.00) ( 0.00, 0.00) ( 0.30,-0.70) :End of matrix B
( 0.63, 0.35) ( 0.45,-0.56) ( 0.08,-0.14) (-0.17,-0.23)

f08qvc NAG C Library Manual

f08qvc.6 [NP3645/7]



(-0.17, 0.09) (-0.07,-0.31) ( 0.27,-0.54) ( 0.35, 1.21)
(-0.93,-0.44) (-0.33,-0.35) ( 0.41,-0.03) ( 0.57, 0.84)
( 0.54, 0.25) (-0.62,-0.05) (-0.52,-0.13) ( 0.11,-0.08) :End of matrix C

9.3 Program Results

f08qvc Example Program Results

Solution matrix X
1 2 3 4

1 (-0.0611, 0.0249) (-0.0031, 0.0798) (-0.0062, 0.0165) ( 0.0054,-0.0063)
2 ( 0.0215,-0.0003) (-0.0155, 0.0570) (-0.0665, 0.0718) ( 0.0290,-0.2636)
3 (-0.0949,-0.0785) (-0.0415,-0.0298) ( 0.0357, 0.0244) ( 0.0284, 0.1108)
4 ( 0.0281, 0.1052) (-0.0970,-0.1214) (-0.0271,-0.0940) ( 0.0402, 0.0048)

SCALE = 1.00e+00

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08qvc

[NP3645/7] f08qvc.7 (last)


	f08qvc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	order
	trana
	tranb
	sign
	m
	n
	a
	pda
	b
	pdb
	c
	pdc
	scal
	fail

	6 Error Indicators and Warnings
	NE_INT
	NE_INT_2
	NE_PERTURBED
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results


	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction



